Московский государственный университет имени М.В. Ломоносова ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

ПРОГРАММА

повышения квалификации

«Современные методы квантовой химии и высокопроизводительные вычисления» (в рамках Инженерной школы МГУ имени М.В. Ломоносова)

(46 академических часов)

1. Цель реализации программы

В настоящее время ключевыми вызовами при создании информационной среды в сфере прогнозирования безопасности и здоровья человека являются внедрение современных квантовых и цифровых технологий, включая разработку эффективных методов квантово-механического моделирования молекулярных процессов и развитие методов диагностики и мониторинга состояния живых систем.

Программа предназначена для повышения квалификации молодых специалистов в области применения современных методов квантовой химии, высокопроизводительных вычислений и методов искусственного интеллекта при разработке эффективных инженерных решений в сфере прогнозирования безопасности и здоровья человека. Курс дополнительного профессионального образования проходит в рамках Инженерной школы МГУ имени М.В. Ломоносова в формате летней выездной школы с привлечением ведущих специалистов из академических институтов, университетов и высокотехнологичных компаний России.

2. Формализованные результаты обучения

Слушатели получат теоретические и практические навыки использования современных методов квантовой химии, высокопроизводительных вычислений и методов искусственного интеллекта при решении прикладных междисциплинарных задач физики, химии и биологии.

В результате освоения программы курса слушатель:

1) должен знать:

основные математические и физические принципы построения современных методов квантовой химии для исследования структуры и динамики атомномолекулярных систем;

границы применимости используемых средств квантовохимического моделирования физико-химических объектов и процессов;

возможности и ограничения расчетных методов квантовой химии при решении практических задач.

2) должен уметь:

оценить возможные источники ошибок при изучении систем различной природы, надежность и применимость различных методов моделирования физикохимических процессов;

обоснованно выбрать метод квантовохимического моделирования изучаемых физико-химических явлений;

применять известные квантовохимические методы к моделированию элементарных процессов.

3) должен владеть:

навыками проведения квантовохимического исследования при изучении реальных научных проблем в области химии, физики и биологии;

навыками использования аналитических и программных средств при решении прикладных физико-химических задач.

4) должен демонстрировать способность и готовность: использовать полученные навыки в практической работе.

3. Содержание программы

Программа состоит из лекций ведущих специалистов химического факультета МГУ имени М.В. Ломоносова. Лекционный курс включает в себя теоретические основы современных методов квантовой химии и их использование в различных областях физики, химии и биологии для решения прикладных научноисследовательских И инженерных задач. Особое внимание уделяется высокопроизводительным вычислениям и применению методов машинного обучения. Программа включает в себя проведение круглых столов для обсуждения со слушателями современных проблем химической физики и теоретической химии, а также стендовых сессий с представлением слушателями докладов в рамках тематики школы.

Учебный план

программы повышения квалификации

«Современные методы квантовой химии и высокопроизводительные вычисления» (в рамках Инженерной школы МГУ имени М.В. Ломоносова)

Категория слушателей (требования к слушателям) — Курс ориентирован на специалистов в области химии, физики, программирования с незаконченным высшим и высшим образованием и действующих инженерных кадров.

Срок обучения – 46 академических часов.

Форма обучения – очная (дневная)

No	Наименование	Всего,	В том числе	
п/п	Разделов	час.	Лекции	Семинары и
				практич.
				занятия
1	Современные методы квантовой химии	13	8	5
2	Высокопроизводительные вычисления	11	6	5
	и алгоритмы машинного обучения			
3	Квантовая химия в физических	9	4	5
	приложениях			
4	Фотохимия молекул при линейном и	11	6	5
	нелинейном возбуждении			
	Итоговая аттестация (зачет)	2	·	
	ВСЕГО	46	24	20

Учебно-тематический план программы повышения квалификации

«Современные методы квантовой химии и высокопроизводительные вычисления» (в рамках Инженерной школы МГУ имени М.В. Ломоносова)

No	Наименование разделов и тем	Всего,	В том числе	
п/п		час.	лекции	Семинары и практич. занятия
1	2	3	4	5
1	Современные методы квантовой химии	13	8	5
1.1	Метод связанных кластеров	2	2	0
1.2	Формализм функций Грина в задачах квантовой химии и молекулярной спектроскопии	2	2	0
1.3	Релятивистский метод связанных кластеров в пространстве Фока	2	2	0
1.4	Многоконфигурационная теория возмущений	2	2	0
1.5	Базовые принципы и условия применимости методов квантовой химии для моделирования структуры и свойств атомно-молекулярных систем	5	0	5
2	Высокопроизводительные вычисления и	11	6	5
	алгоритмы машинного обучения			
2.1	Применение алгоритмов машинного обучения при изготовлении материалов и высокотехнологичной продукции	2	2	0
2.2	Инструменты машинного обучения для решения прикладных задач химии	2	2	0
2.3	Суперкомпьютерные технологии в инженернофизическом моделировании	2	2	0
2.4	Коллаборация науки и индустриального сектора в сфере квантовой инженерии	5	0	5
3	Квантовая химия в физических приложениях	9	4	5
3.1	Молекулярная спектроскопия и астрофизика	2	2	0
3.2	Радиационные аспекты моделирования климата и дистанционного зондирования природных и антропогенных процессов	2	2	0
3.3	Классическая и квантовая динамика межмолекулярных взаимодействий	5	0	5
4	Фотохимия молекул при линейном и нелинейном возбуждении	11	6	5
4.1	Фемтосекундная лазерная спектроскопия с временным разрешением	2	2	0
4.2	Методы квантовой молекулярной динамики для исследования сверхбыстрых неадиабатических процессов релаксации электронновозбужденных молекул	2	2	0

4.3	Нелинейное поглощение коррелированных и	2	2	0
	некоррелированных пар фотонов молекулами			
4.4	Фотоиндуцированная неадиабатическая	5	0	5
	динамика биомолекулярных систем			
	Итоговая аттестация (зачет)	2		
	ВСЕГО	46	24	20

4. Материально-технические условия реализации программы

Преподавание курса в форме авторских лекций ведущих специалистов России и проведения круглых столов с активным вовлечением слушателей в тематические дискуссии по современным проблемам химической физики и теоретической химии.

Проектор или большой монитор – 1 шт.

5. Учебно-методическое обеспечение программы

Слушателям предоставляются материалы лекций в виде презентаций. По теме каждого занятия указываются источники в текущей научной периодической литературе.

Перечень дополнительной учебной литературы и электронные ресурсы:

- 1. Степанов Н.Ф., Пупышев В.И. Квантовая механика молекул и квантовая химия Москва: Издательство Московского Университета, 1991.
- 2. Szabo A., Ostlund N.S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Revised Edition). New York: Dover, 1996.
- 3. Хрустов В.Ф. Современные методы квантовой химии. Методическое пособие, Ч. І-ІІ. Химический факультет МГУ имени М.В. Ломоносова, 2022. https://phys.chem.msu.ru/quantum-chemistry/
- 4. Зайцевский А.В. Релятивистская теория электронного строения молекул. Методическое пособие. Химический факультет МГУ имени М.В. Ломоносова, 2005. http://qchem.pnpi.spb.ru/ru/Andrei
- 5. Bochenkova A.V. Multiconfigurational methods including XMCQDPT2 theory for excited states of light-sensitive biosystems. In Comprehensive Computational Chemistry (First Edition), vol. 4, pp. 141–157, Oxford, Elsevier, 2024.
- 6. Kazakov K.V. Uncommon paths in quantum physics. Elsevier, 2014.
- 7. Банкер Ф., Йенсен П. Симметрия молекул и спектроскопия. Изд. 2. Москва: Мир. 2004.
- 8. Quantum Chemistry in the Age of Machine Learning, Dral P.O., Ed. Elsevier, 2023.

6. Требования к результатам обучения

Слушатели получат теоретические и практические навыки использования современных методов квантовой химии, высокопроизводительных вычислений и методов искусственного интеллекта при решении прикладных междисциплинарных задач физики, химии и биологии.

Итоговая аттестация будет проходить в форме интерактивного недифференцированного зачета, на котором от слушателей потребуется представить стендовые доклады по тематике школы и продемонстрировать полученные знания в области современных методов квантовой химии при решении практических задач.

7. Составители программы

Боченкова Анастасия Владимировна, к.ф.-м.н., доцент, зав. лаб., химический факультет МГУ имени М.В. Ломоносова, Москва, Россия

Казаков Константин Вячеславович, д.ф.-м.н., в.н.с., химический факультет МГУ имени М.В. Ломоносова, Москва, Россия